
15ME61

Sixth Semester B.E. Degree Examination, July/August 2021 Finite Element Analysis

Time: 3 hrs .
Max. Marks: 80

Note: Answer any FIVE full questions.

1 a. Explain the basic steps in the finite element methods.
(06 Marks)
b. State principle of minimum potential energy.
(02 Marks)
c. Fig.Q1(c) shows a bar fixed at both ends subjected to an axial load as indicated. Determine the displacement at loading point using Rayleigh-Ritz method.

$\mathrm{E}=1, \mathrm{~A}=1$
Fig.Q1(c)
(08 Marks)
2 a. Explain the plane stress and plane strain problems with examples.
(05 Marks)
b. Using principle of minimum potential energy determine the displacement at the nodes for a spring system shown in Fig.Q2(b). Take $\mathrm{K}_{1}=40 \mathrm{~N} / \mathrm{m}, \mathrm{K}_{2}=60 \mathrm{~N} / \mathrm{m}, \mathrm{K}_{3}=80 \mathrm{~N} / \mathrm{m}$, $\mathrm{F}_{1}=60 \mathrm{~N}, \mathrm{~F}_{2}=50 \mathrm{~N}$.

c. State and explain the convergence requirement for the finite element solution.
(08 Marks)
(03 Marks)
3 a. The bar shown in Fig.Q3(a), an axial load $\mathrm{P}=200 \times 10^{3} \mathrm{~N}$ is applied as shown, using the penalty approach for handling boundary conditions, determine nodal displacements.

b. Derive shape functions for CST element.
(10 Marks)
(06 Marks)

4 a. Explain briefly the iso-parametric, sub parametric and super-parametric elements. (06 Marks)
b. For the two bar truss shown in Fig.Q4(b), determine nodal displacements element. Take $\mathrm{E}=200 \mathrm{GPa}$, area of each bar $=1000 \mathrm{~mm}^{2}$

(10 Marks)
5 a. Derive Hermit shape function for beam element.
(06 Marks)
b. For the beam and loading shown in Fig.Q5(b), determine the slopes at 2 and 3 and the vertical deflection at the midpoint of the distributed load. Take $\mathrm{E}=200 \mathrm{GPa}$, $\mathrm{I}=4 \times 10^{6} \mathrm{~mm}^{4}$.

(10 Marks)
6 a. Derive stiffness matrix for the beam element.
(06 Marks)
b. A bar of circular cross section having a diameter of 50 mm is firmly fixed at its ends and subjected to a torque at B and C as shown in Fig.Q6(b). Determine maximum angle of twist and shear stresses. Take $G=7 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$ and $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Fig.Q6(b)
(10 Marks)

15ME61
(06 Marks)
7 a. Discuss the Galerkin approach for 1-D heat conduction problem.
b. A composite wall consists of three materials, as shown in Fig.Q7(b). The outer temperature is $\mathrm{T}_{0}=20^{\circ} \mathrm{C}$. Convection head transfer takes place on the inner surface of the wall with $\mathrm{T}_{\infty}=800^{\circ} \mathrm{C}$ and $\mathrm{h}=25 \mathrm{~W} / \mathrm{m}^{2}$. Determine temperature distribution in the wall.

Fig.Q7(b)
(10 Marks)
8 a. Derive the stiffness matrix for one dimensional fluid element.
(06 Marks)
b. For the smooth pipe shown in Fig.Q8(b) with uniform cross section of $1 \mathrm{~m}^{2}$, determine the flow velocities at the centre and right end, knowing the velocity at the left is $V_{x}=2 \mathrm{~m} / \mathrm{sec}$.

(10 Marks)
9 In Fig.Q9, a long cylinder of inside diameter 80 mm and outside diameter 120 mm snugly fits in a hole over its length. The cylinder is then subjected to an internal pressure 2 MPa . Using two elements on the 10 mm length, find the displacements at the inner radius Take $\mathrm{E}=200 \mathrm{GPa}, \gamma=0.3$.

Fig.Q9
(16 Marks)

10 Evaluate eigen vectors and eigen values for the stepped bar shown in Fig.Q10. Take $\mathrm{E}=200 \mathrm{GPa}$ specific weight $7850 \mathrm{~kg} / \mathrm{m}^{3}$. Draw mode shapes. Take $\mathrm{A}_{1}=400 \mathrm{~mm}^{2}$ and $\mathrm{A}_{2}=200 \mathrm{~mm}^{2}$.

(16 Marks)

